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Abstract

The numerical determination of relaxation times or other characteristic dynamical variables is often connected with intrinsic computa-
tional problems and consequently can be legitimately criticized. We present here for finding dynamical variables a general numerical
method, which allows one to avoid these problems, and which is based exclusively on numerical equilibrium values: 02.70™, 05.20™,

64.10". © 2001 Elsevier Science Ltd. All rights reserved.
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The characterization of thermodynamic processes is
based mostly on statements about relaxation processes
whose theoretical treatment by analytical methods is possi-
ble only in simple or very special cases. Numerical simula-
tion methods are usually used for more complex problems,
but in the majority of cases essential difficulties arise as a
result of the properties of the numerical approaches. We
consider in this paper the numerical simulation of a physical
system 3 made up of a sufficient large bath 3, and the
subsystem 3 of the objects. Molecular dynamics methods
are based on the integration of the exact or effective equa-
tions of motion for the underlying thermodynamical
systems and thus these methods can lead to a realistic deter-
mination of relaxation times. The difficulty of these methods
is given by the numerical algorithm: it is necessary to realize
a large number of very time expensive numerical integration
steps and unfortunately, each step realizes in general only a
small change of the thermodynamic state of the system.
Hence, one can investigate only small time intervals (less
than 10~ s), despite the cost of these computation methods.

Decreasing the integration time by a reduction of the
number or thermodynamical observables leads to new
problems. In the usual Brownian dynamics method [1],
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the thermodynamic environment (thermodynamic bath) is
replaced by introducing microscopical friction coefficients
and external stochastic forces [2—4]. The disadvantage of
this method is, that one needs information about the
dynamics of the bath, which are reflected in the memory
terms (friction coefficients) and the correlation functions of
the stochastic forces. In the simplest case (simple friction
coefficients and white noise for the stochastic forces) there
exists one free parameter and the unsolved problem is the
way the effective (temperature dependent interactions are
changed in comparison to the original (mechanical) inter-
actions. This is general problem of all molecular dynamics
methods, if they are used for the determination of dynamical
values, e.g. constrained dynamics methods [5,6] (with a
permanent redefining of the friction coefficient), Gibbsian
dynamics methods [7,8] (solution of generalized Newtonian
equations of motion with additional degrees of freedom) or
direct renormalization [9] (with a conservation of the total
kinetic energy). All these numerical methods yield the exact
equilibrium distribution in the configuration (coordinate)
space, in particular both the momentum and configuration
space, but the additional constraints or degrees of freedom
lead to uncertain deviations of the dynamical values from
reality [10]. Pure Monte Carlo simulations [11,12] and
combined Monte Carlo — Molecular Dynamics methods
[13,14] can also used with the same restrictions for dyna-
mical investigations [14—16], but here we have the addi-
tional problem of the unknown ratio between a Monte
Carlo step and a real time step.

Still a large number of numerical data must be processed
(in practice, one must determine a sufficiently large number

0032-3861/02/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S1089-3156(01)00015-0



556 H.L. Frisch, M. Schulz / Polymer 43 (2002) 555-558

of time dependent functions f(¢) for the computation of one
average f(¢)). Only short real time intervals can be investi-
gated in most cases, i.e. only short relaxation times can be
observed with high accuracy by such methods. The aim of
this paper is the presentation of a method, which allows the
determination of dynamical values (especially relaxation
times) by using only equilibrium values (which can be
determined with a high accuracy by numerical methods
mentioned above). Our specific interest is to justify the
linear relaxation behavior we have employed to study the
melt and intrinsic viscosity of Rouse chain models and
the melt viscosity of normal alkanes using the Kramers
potential method [17-20]. This method provided these vis-
cosities directly from available Monte Carlo data on the
equilibrium radius of gyration of these chains and thus
connects our work to polymer theory.

We consider a system 3, in a 2N-dimensional general
phase space, with N coordinates x; (configuration space)
and N canonical conjugated momenta p; (momentum
space), i.e. with 2N general coordinates Z;

X
Z:( )a -x:(-xla-“’xN)’ p:(pl’-“’pN)
p

which is in contact with a thermodynamic bath 3.
Formally, the equations of motion for this thermodynamic
system can be determined by using the projection operator
formalism [3]

9p() = Qg 9,(1) — JO 'Y, () ot =)+ L. (D
Here

pp(t) =e"pp,

(L is the Liouville operator) are the relevant time dependent
observables of the system 3 (The total set of g, contains
all linear independent functions of the 2N generalized
coordinates Z; and spans the subspace %) The complete
Liouville space # is formed by %) and the space #, of
all other (irrelevant) observables which are connected with
the bath 3, (1) contains the memory matrix Y, (1), the
frequency matrix {2, and the residual forces {g(#) which
remain always in the space % . These residual forces are
mainly determined by the dynamics of the bath and have for
the relevant observables the meaning of stochastic forces.
Under the reasonable assumption if all correlations of the
bath are characterized by sufficiently short times, it is possi-
ble to use the Markovian approximation and replace the
memory matrix by a simple effective friction matrix Ag, =
f8° Yﬁy(t) dr whereas the residual forces behave as white
noise. Because of the property (AB)(¢) = e"(AB) =
A()B(t) of the Liouville operator, all time dependent
relevant observables gz can be replaced by functions of
the time dependent general coordinates Z(f) and the equa-
tions of motion for these coordinates have now the general

characteristic structure
Z; = ®(Z(1) + & (2)

Clearly, the effective forces @ are determined by the friction
and frequency matrix (and are therefore temperature depen-
dent) and consequently, unfortunately, it is impossible to
determine @; for most cases of physical interest. If the
thermodynamic fluctuations (the deviations & = Z; — Z;
of the general coordinates Z; from the thermodynamic aver-
age Z; are sufficiently small (in absence of critical behavior
due, e.g. to a phase transition), it is reasonable to realize a
linear formulation of these equations by a Taylor expansion
of the potential around the minimum Z°. On neglecting all
higher correlations Z; = 70, ie. the equilibrium state is
determined by

(px XO, 0
oz°) = ( (o, p )) _
P’ p)
and the linearized equations of motion becomes
Ei= T+ f; 3)
with
b 9P*
(T wore _ ox ap
S\ ) | eer aar
0x ap

Formally, the relaxation time spectrum is now completely
determined, because the homogeneous solution exp{ — I't})
of Eq. (3) determines the time behavior of the autocorrela-
tion functions of the thermodynamic observables ;. These
correlation functions are represented by a linear combina-
tion of exponential functions

&0 g0 = 3y exp( )
m=1,N m

in which the 7, ! are the eigenvalues of I'. In this sense, it is
reasonable to speak about relaxation times 7,, and a relaxa-
tion time spectrum, respectively. Unfortunately, whereas
the determination of the relaxation times from I' is always
possible (perhaps by using numerical standard procedures),
the determination of the correct matrix elements I
becomes very difficult or impossible for complex system
and one is forced to use numerical simulations methods
(with the above discussed problems) for the investigation
of the real dynamics of the system 3 = 3, + 3.

To avoid this situation we add an infinitesimal small
external harmonic contribution

x nxx nxp x
SV(Z,m) =ZInZ =
wo=a= ()G ))

to the Hamiltonian. This leads to a small additional contri-
bution 8L to the Liouville operator. It is simple to see, that
8L always maps a relevant observable to another element of



H.L. Frisch, M. Schulz / Polymer 43 (2002) 555-558 557

). Therefore, 8L does not change the memory matrix (and
therefore the friction coefficients), whereas all contributions
to the frequency matrix change Eq. (2) to

Zi=M™Z)— onZ + {;

with

(o)

o= .

1 0

Note that the contributions of 3V to the generalized effective
forces @ are equal to the contributions without the thermo-
dynamic bath. Therefore, it is possible to add this contribu-
tion directly to the effective equations of motion (2) and the
present method is also valid for numerical simulations of
systems, in which the bath is reduced to the action of some

few parameters (Brownian dynamics, Monte Carlo Simula-
tions). Now, the equilibrium state is determined by

&% — onz® =0. )

As a result of this additional potential one get a new equili-
brium state Zo(n), which can be represented for sufficient
small values 7 by a first order Taylor expansion

IZ ()
Myun

Z)(m) = Z)(0) + | =0 M- )

Using Eq. (4), we get

9z}
ij_j = _a-ier(l) .
9 Myun
Therefore Eq. (5) becomes

Z2(n) = ZY(0) = TG 1 MpnZe(0) (6)

with 7=T "' (The eigenvalues of Tare the relaxation times
of system). Now we have the possibility of determining the
relaxation time directly from static equilibrium values
(which are obtained with sufficiently high accuracy from
the usual numerical solutions.) The changing of the thermo-
dynamic average Z of the general coordinates as a result of
an arbitrary infinitesimal small additional harmonic contri-
bution 8V = 7;Z;Z; allows the determination of the relaxa-
tion time spectrum straightforwardly by using Eq. (6).

The present representation is based on equilibrium values
of the generalized coordinates of both the configuration
space and the momentum space. Thus Eq. (6) is suitable
for Molecular Dynamics methods, which determine simul-
taneously the exact equilibrium distribution in the 2N
dimensional phase space. Moreover, Eq. (6) assumes, that
the thermodynamical averages of the momenta are not equal
to 0, because in this case only a part of the 7-matrix can be
determined. Such cases (especially for all Monte Carlo
simulations, which act only in configuration space) make
possible the determination of the submatrix

7 =[P = Py e

However, in the case of strong damping (or its equivalent

vanishing inertia) the knowledge of 7% is often sufficient for
the determination of reasonable results. This situation is
typical for the determination of the relaxation times of a
macromolecular objects, for which analytical investigations
are only possible for some special types of topology [21,22]
and molecular interactions. Here, numerical simulations
[23,24] are a reasonable alternative for solving the majority
of physical questions. Because, in the physically interesting
time intervals each monomer behaves as a Brownian parti-
cle it is not necessary to consider the inertia term in the
equation of motion. At first, one reduces Eq. (3) (elimination
of the generalized momenta) to a N dimensional system of
second order differential equations for the coordinates of the
configuration space

&= [PT" =TI )~ F ) + [FPTP 7)™+ TRk
)

In general, it is I™” ~ 1/m, i.e. after multiplication with
(I"")~! and the realization and m — 0 (under consideration
of the definition I'""(I'"")"! = A = const.) it follows that

i=—-A1") (®)

In a large number of cases (e.g. if the coordinates corre-
sponds to equivalent particles, such as the monomers in a
macromolecule) one can assume, that the matrix A can be
replaced by an unitary matrix with a constant prefactor.
Therefore, the relaxation times are complete determined
by Eq. (8) from equilibrium values with a high accuracy,
except for the prefactor [25].

We demonstrate the effectiveness of this method on a
simple example and determine the relaxation time for the
Schlogl model [26], because all results are well known
[27,28]. (For more realistic applications on complicated
systems see Ref. [25,29]) This model has only one relevant
coordinate (particle number X) and is described by the
kinetic equations

B+X—C A+X—2X C—-B+X
)

2X—A+X

with the reaction constants k; (i = 1,...,4) and corresponds in
the positive Poisson representation [28] to a general stochas-
tic differential equation (equivalent to Eq. (2))

a = g(a) + h(a) &1) (10)
with
g(@) = k;C + (koA — kyB)a — kyo (11)
and

h(@) = [2(kyAa — ky0?).

The relaxation time is given by
B 1
JkyA = k,BY? + dksk,C

TR (12)
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Table 1
Comparison of the relaxation times (Tg,y,: humerical simulation, Tg heo
Predictions from (19)) for different values C, A =50, B=5, k; = 1Vi

C/10000 TR.um TRtheo

0.1 0.01272 = 0.0001 0.01288
1.0 0.00479 = 0.0001 0.00488
2.0 0.00348 = 0.0001 0.00349
3.0 0.00280 = 0.0001 0.00286
4.0 0.00248 = 0.0001 0.00248
5.0 0.00221 = 0.0001 0.00222

Here, the variable « is the coordinate and corresponds to the
average number of particles X = (a). To determine the
relaxation time of Eq. (10) by using Eq. (6) it is necessary
for an additional contribution na to the general force g(a),
i.e. we introduce a new additional reaction.

X+n—D

to the reaction scheme (9) and determine for this general
system the function ¥(n) = (@), by numerical simulations.
By the way, this is also a reasonable alternative for the
determination of relaxation times of chemical reactions.
Table 1 shows the numerical relaxation time (determined
from Eq. (6) and a very simple program with a total CPU
time of approximately 3 min on an IBM RISC 3200 work-
station) in comparison with the values of Eq. (12) for differ-
ent concentrations C. It should be mentioned, that for
situations with a very small average particle number X,
the difference between the numerical and theoretical results
is large because the fluctuations of X have the same (or
higher) order of magnitude as the average X.

The real applications of the presented method consist in
the determination of the relaxation spectrum in systems with
large number of degrees of freedom [25]. For these cases it
is often of sufficient interest to get an approximation for the
average relaxation time Therefore, we use the norm

1Z° (|| = (Z° ()| plZ° ()

with measure p. Using the Schwarz inequality on Eq. (6), we
have

1Z°pl| = [[(Z2° — 1oz )| (13)
= [IZ°0)|| + [lronz° ()|

= [Z°©Ol + llliz o)l

and

1Z°)]| = [1Z°(n) + 7oz )] (14)

k]

= [Z°ll + [[lllllz" o)

i.e. the sum of these two inequalities leads to

. N2l - 12°©

15
=o' [ImllZ°O)] (1>

In the case of the simple (but mostly used) measure p = 1 it
follows that the final approximation yields

A O A Ol _
lim | 2 =l = 7
=0 [[mlllZz°)]

Thus, only a few numerical simulations of static thermody-
namic properties for different small values m are sufficient
for reasonable approximations of the averaged relaxation
times for complicated many particle systems. The numerical
effectiveness of this method is shown in the accurate results,
given by [25,29].

In summary this method allows a clever way to handle all
problems, which are connected with a direct determination
of the relaxation times by the usual numerical methods.
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